Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Euro Surveill ; 29(13)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38551095

RESUMO

BackgroundScarce European data in early 2021 suggested lower vaccine effectiveness (VE) against SARS-CoV-2 Omicron lineages than previous variants.AimWe aimed to estimate primary series (PS) and first booster VE against symptomatic BA.1/BA.2 infection and investigate potential biases.MethodsThis European test-negative multicentre study tested primary care patients with acute respiratory symptoms for SARS-CoV-2 in the BA.1/BA.2-dominant period. We estimated PS and booster VE among adults and adolescents (PS only) for all products combined and for Comirnaty alone, by time since vaccination, age and chronic condition. We investigated potential bias due to correlation between COVID-19 and influenza vaccination and explored effect modification and confounding by prior SARS-CoV-2 infection.ResultsAmong adults, PS VE was 37% (95% CI: 24-47%) overall and 60% (95% CI: 44-72%), 43% (95% CI: 26-55%) and 29% (95% CI: 13-43%) < 90, 90-179 and ≥ 180 days post vaccination, respectively. Booster VE was 42% (95% CI: 32-51%) overall and 56% (95% CI: 47-64%), 22% (95% CI: 2-38%) and 3% (95% CI: -78% to 48%), respectively. Primary series VE was similar among adolescents. Restricting analyses to Comirnaty had little impact. Vaccine effectiveness was higher among older adults. There was no signal of bias due to correlation between COVID-19 and influenza vaccination. Confounding by previous infection was low, but sample size precluded definite assessment of effect modification.ConclusionPrimary series and booster VE against symptomatic infection with BA.1/BA.2 ranged from 37% to 42%, with similar waning post vaccination. Comprehensive data on previous SARS-CoV-2 infection would help disentangle vaccine- and infection-induced immunity.


Assuntos
COVID-19 , Influenza Humana , Humanos , Adolescente , Idoso , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacina BNT162 , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Europa (Continente)/epidemiologia , Atenção Primária à Saúde
2.
Euro Surveill ; 29(8)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390651

RESUMO

Influenza A viruses circulated in Europe from September 2023 to January 2024, with influenza A(H1N1)pdm09 predominance. We provide interim 2023/24 influenza vaccine effectiveness (IVE) estimates from two European studies, covering 10 countries across primary care (EU-PC) and hospital (EU-H) settings. Interim IVE was higher against A(H1N1)pdm09 than A(H3N2): EU-PC influenza A(H1N1)pdm09 IVE was 53% (95% CI: 41 to 63) and 30% (95% CI: -3 to 54) against influenza A(H3N2). For EU-H, these were 44% (95% CI: 30 to 55) and 14% (95% CI: -32 to 43), respectively.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza B , Vírus da Influenza A Subtipo H3N2 , Vacinação , Estudos de Casos e Controles , Estações do Ano , Hospitais , Atenção Primária à Saúde
3.
Influenza Other Respir Viruses ; 18(1): e13243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204584

RESUMO

Background: Influenza A(H3N2) viruses dominated early in the 2022-2023 influenza season in Europe, followed by higher circulation of influenza A(H1N1)pdm09 and B viruses. The VEBIS primary care network estimated the influenza vaccine effectiveness (VE) using a multicentre test-negative study. Materials and Methods: Primary care practitioners collected information and specimens from patients consulting with acute respiratory infection. We measured VE against any influenza, influenza (sub)type and clade, by age group, by influenza vaccine target group and by time since vaccination, using logistic regression. Results: We included 38 058 patients, of which 3786 were influenza A(H3N2), 1548 influenza A(H1N1)pdm09 and 3275 influenza B cases. Against influenza A(H3N2), VE was 36% (95% CI: 25-45) among all ages and ranged between 30% and 52% by age group and target group. VE against influenza A(H3N2) clade 2b was 38% (95% CI: 25-49). Overall, VE against influenza A(H1N1)pdm09 was 46% (95% CI: 35-56) and ranged between 29% and 59% by age group and target group. VE against influenza A(H1N1)pdm09 clade 5a.2a was 56% (95% CI: 46-65) and 79% (95% CI: 64-88) against clade 5a.2a.1. VE against influenza B was 76% (95% CI: 70-81); overall, 84%, 72% and 71% were among 0-14-year-olds, 15-64-year-olds and those in the influenza vaccination target group, respectively. VE against influenza B with a position 197 mutation of the hemagglutinin (HA) gene was 79% (95% CI: 73-85) and 90% (95% CI: 85-94) without this mutation. Conclusion: The 2022-2023 end-of-season results from the VEBIS network at primary care level showed high VE among children and against influenza B, with lower VE against influenza A(H1N1)pdm09 and A(H3N2).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Europa (Continente)/epidemiologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Atenção Primária à Saúde , Eficácia de Vacinas , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
4.
Euro Surveill ; 28(46)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971659

RESUMO

The SARS-CoV-2 BA.2.86 Omicron subvariant was first detected in wastewater in Sweden in week 31 2023, using 21 highly specific markers from the 50 investigated. We report BA.2.86's introduction and subsequent spread to all 14 regions performing wastewater sampling, and on 70 confirmed COVID-19 cases, along with the emergence of sublineages JN.1 and JN.2. Further, we investigated two novel mutations defining the unique BA.2.86 branching in Sweden. Our integrated approach enabled variant tracking, offering evidence for well-informed public health interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , Suécia/epidemiologia , COVID-19/epidemiologia , Genômica
5.
Influenza Other Respir Viruses ; 17(1): e13069, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702797

RESUMO

BACKGROUND: In 2021-2022, influenza A viruses dominated in Europe. The I-MOVE primary care network conducted a multicentre test-negative study to measure influenza vaccine effectiveness (VE). METHODS: Primary care practitioners collected information on patients presenting with acute respiratory infection. Cases were influenza A(H3N2) or A(H1N1)pdm09 RT-PCR positive, and controls were influenza virus negative. We calculated VE using logistic regression, adjusting for study site, age, sex, onset date, and presence of chronic conditions. RESULTS: Between week 40 2021 and week 20 2022, we included over 11 000 patients of whom 253 and 1595 were positive for influenza A(H1N1)pdm09 and A(H3N2), respectively. Overall VE against influenza A(H1N1)pdm09 was 75% (95% CI: 43-89) and 81% (95% CI: 45-93) among those aged 15-64 years. Overall VE against influenza A(H3N2) was 29% (95% CI: 12-42) and 25% (95% CI: -41 to 61), 33% (95% CI: 14-49), and 26% (95% CI: -22 to 55) among those aged 0-14, 15-64, and over 65 years, respectively. The A(H3N2) VE among the influenza vaccination target group was 20% (95% CI: -6 to 39). All 53 sequenced A(H1N1)pdm09 viruses belonged to clade 6B.1A.5a.1. Among 410 sequenced influenza A(H3N2) viruses, all but eight belonged to clade 3C.2a1b.2a.2. DISCUSSION: Despite antigenic mismatch between vaccine and circulating strains for influenza A(H3N2) and A(H1N1)pdm09, 2021-2022 VE estimates against circulating influenza A(H1N1)pdm09 were the highest within the I-MOVE network since the 2009 influenza pandemic. VE against A(H3N2) was lower than A(H1N1)pdm09, but at least one in five individuals vaccinated against influenza were protected against presentation to primary care with laboratory-confirmed influenza.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Estudos de Casos e Controles , Europa (Continente)/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Atenção Primária à Saúde , Vacinação , Eficácia de Vacinas , Masculino , Feminino , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
6.
Virus Evol ; 8(2): veac074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128050

RESUMO

Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at a high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-9) from mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into three distinct lineages, structured by year of isolation. Specifically, across the 8 years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigenic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.

7.
Infect Genet Evol ; 91: 104793, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33652116

RESUMO

The tick-transmitted bacterium Borrelia afzelii consists of a number of antigenically different strains - often defined by outer surface protein C (OspC) genotype - that coexist at stable frequencies in host populations. To investigate how host antibody responses affect strain coexistence, we measured antibody cross-reactivity to three different OspC types (OspC 2, 3 and 9) in three different strains of laboratory mice (BALB/c, C3H and C57BL/6). The extent of cross-reactivity differed between mouse strains, being higher in C3H than BALB/c and C57BL/6. In one of three pairwise comparisons of OspC types (OspC2 vs OspC9), there was evidence for asymmetry of cross-reactivity, with antibodies to OspC2 cross-reacting more strongly with OspC9 than vice versa. These results indicate that the extent of antibody-mediated competition between OspC types may depend on the composition of the host population, and that such competition may be asymmetric. We discuss the implications of these results for understanding the coexistence of OspC types.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Grupo Borrelia Burgdorferi/imunologia , Animais , Reações Cruzadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
8.
Avian Dis ; 63(sp1): 138-144, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31131570

RESUMO

The hemagglutination inhibition (HI) assay is commonly used to assess the humoral immune response against influenza A viruses (IAV). However, the microneutralization (MN) assay has been reported to have higher sensitivity when testing sera from humans and other species. Our objective was to determine the agreement between MN and HI assays and compare the proportion of positive samples detected by both methods in sera of mallards primary infected with the A/mallard/MN/Sg-000169/ 2007 (H3N8) virus and subsequently inoculated with homosubtypic or heterosubtypic IAV. Overall, we found poor to fair agreement (prevalence-adjusted bias-adjusted kappa [PABAK], 0.03-0.35) between MN and HI assays in serum samples collected 2 weeks after H3N8 inoculation; the observed agreement increased to moderate or substantial in samples collected 4 to 5 weeks postinoculation (WPI) (PABAK, 0.52-0.75). The MN assay detected a higher proportion of positive samples compared with HI assays in serum samples collected 2 WPI (P = 0.01). This difference was not observed in samples collected 4 WPI. Also, a boosting effect in MN and HI titers was observed when birds were subsequently inoculated with IAV within the same H3 clade. This effect was not observed when birds were challenged with viruses that belong to a different HA clade. In summary, the agreement between assays varies depending on the postinfection sample collection time point and the similarity between the antigens used for the assays. Additionally, subsequent exposure of ducks to homosubtypic or heterosubtypic strains might affect the observed agreement.


¿Los ensayos de microneutralización e inhibición de la hemaglutinación son comparables? Resultados serológicos de patos de collar infectados experimentalmente con influenza. La prueba de inhibición de la hemaglutinación se usa rutinariamente para evaluar la respuesta inmune humoral contra los virus de influenza aviar, sin embargo, se ha reportado que la prueba de microneutralización tiene una mayor sensibilidad cuando se evalúan muestras de suero de humanos u otras especies. Este estudio tuvo como objetivo determinar la concordancia entre las pruebas de microneutralización e inhibición de la hemaglutinación en suero de patos de collar que fueron desafiados con el virus A/ mallard/MN/Sg-000169/2007(H3N8) y re-inoculados con virus de influenza aviar homosubtípicos o heterosubtípicos. Además, se comparó la proporción de muestras positivas detectadas por ambos métodos. En general, se observó un nivel de concordancia pobre a razonable (PABAK = 0.03 - 0.35) entre las pruebas de microneutralización e inhibición de la hemaglutinación en muestras de suero recolectadas dos semanas post-inoculación del virus H3N8. La concordancia se incrementó a moderada o sustancial en muestras recolectadas cuatro o cinco semanas después de la inoculación (PABAK = 0.52 - 0.75). Una mayor proporción de muestras recolectadas a las dos semanas después de la inoculación fueron positivas por microneutralización en comparación con inhibición de la hemaglutinación (P = 0.01), estas diferencias no fueron observadas con las muestras recolectadas a las cuatro semanas después de la inoculación. Adicionalmente, se observó un incremento en los títulos de anticuerpos cuando las aves fueron re-inoculadas con virus de influenza aviar pertenecientes al mismo clado H3 de la hemaglutinina. Este efecto no fue observado en los patos re-inoculados con virus de influenza aviar pertenecientes a un clado distinto. En resumen, la concordancia entre los ensayos varía según el momento de recolección de la muestra y la similitud entre los antígenos utilizados para los ensayos. Además, la re-inoculación de patos con una cepa homosubtípica or heterosubtípica podría afectar el nivel de concordancia observada.


Assuntos
Patos , Testes de Inibição da Hemaglutinação/veterinária , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Influenza Aviária/diagnóstico , Testes de Neutralização/veterinária , Animais , Anticorpos Antivirais/sangue , Testes de Inibição da Hemaglutinação/métodos , Testes de Neutralização/métodos
9.
Virus Evol ; 4(2): vey025, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30151242

RESUMO

Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.

10.
Emerg Microbes Infect ; 6(12): e110, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29209053

RESUMO

Avian influenza viruses pose a serious zoonotic threat, in part because current seasonal influenza virus vaccines only offer strain-specific protection, instead of heterosubtypic or universal protection against influenza virus infection. Understanding the humoral response to vaccination and natural infection in the broadest context possible is important to developing defenses against influenza zoonosis. Protein microarrays are a novel platform well suited to assaying the humoral immune response broadly and efficiently. We developed an influenza virus protein microarray (IVPM) that could be used to assay sera from many species, including humans. Waterfowl such as mallard ducks are natural reservoirs for many influenza A viruses, but their humoral immune response to infection is poorly understood. To establish this technology, we assayed sera from mallards experimentally infected with two low-pathogenic common avian influenza viruses (H3N8 and H4N5) for reactivity to influenza virus hemagglutinin (HA) by IVPM. The IVPM results correlated well with results from an established enzyme-linked immunosorbent assay, supporting the validity of the IVPM as a serological assay in influenza virus research. Interestingly, successive infection with H3N8 followed by H4N5 virus in mallard ducks induced antibodies that were broadly reactive against group 2 hemagglutinins. We also analyzed sera from wild mallards and observed serological evidence for infection in those sera. With serological information, it may be possible to infer infection history of wild avian species and gain a better understanding of the infection dynamics of influenza viruses in their natural reservoir. This might ultimately lead to interventions that enhance our pandemic preparedness.


Assuntos
Anticorpos Antivirais/análise , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Análise Serial de Proteínas/métodos , Proteínas Virais/imunologia , Animais , Animais Selvagens/imunologia , Animais Selvagens/virologia , Anticorpos Antivirais/imunologia , Aves/imunologia , Aves/virologia , Patos , Ensaio de Imunoadsorção Enzimática , Imunidade Humoral , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Proteínas Virais/análise
11.
J Gen Virol ; 98(12): 2937-2949, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29139346

RESUMO

Neuraminidase inhibitors are a cornerstone of influenza pandemic preparedness before vaccines can be mass-produced and thus a neuraminidase inhibitor-resistant pandemic is a serious threat to public health. Earlier work has demonstrated the potential for development and persistence of oseltamivir resistance in influenza A viruses exposed to environmentally relevant water concentrations of the drug when infecting mallards, the natural influenza reservoir that serves as the genetic base for human pandemics. As zanamivir is the major second-line neuraminidase inhibitor treatment, this study aimed to assess the potential for development and persistence of zanamivir resistance in an in vivo mallard model; especially important as zanamivir will probably be increasingly used. Our results indicate less potential for development and persistence of resistance due to zanamivir than oseltamivir in an environmental setting. This conclusion is based on: (1) the lower increase in zanamivir IC50 conferred by the mutations caused by zanamivir exposure (2-17-fold); (2) the higher zanamivir water concentration needed to induce resistance (at least 10 µg l-1); (3) the lack of zanamivir resistance persistence without drug pressure; and (4) the multiple resistance-related substitutions seen during zanamivir exposure (V116A, A138V, R152K, T157I and D199G) suggesting lack of one straight-forward evolutionary path to resistance. Our study also adds further evidence regarding the stability of the oseltamivir-induced substitution H275Y without drug pressure, and demonstrates the ability of a H275Y-carrying virus to acquire secondary mutations, further boosting oseltamivir resistance when exposed to zanamivir. Similar studies using influenza A viruses of the N2-phylogenetic group of neuraminidases are recommended.

12.
PLoS Pathog ; 13(6): e1006419, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640898

RESUMO

Our overall hypothesis is that host population immunity directed at multiple antigens will influence the prevalence, diversity and evolution of influenza A virus (IAV) in avian populations where the vast subtype diversity is maintained. To investigate how initial infection influences the outcome of later infections with homologous or heterologous IAV subtypes and how viruses interact through host immune responses, we carried out experimental infections in mallard ducks (Anas platyrhynchos). Mallards were pre-challenged with an H3N8 low-pathogenic IAV and were divided into six groups. At five weeks post H3N8 inoculation, each group was challenged with a different IAV subtype (H4N5, H10N7, H6N2, H12N5) or the same H3N8. Two additional pre-challenged groups were inoculated with the homologous H3N8 virus at weeks 11 and 15 after pre-challenge to evaluate the duration of protection. The results showed that mallards were still resistant to re-infection after 15 weeks. There was a significant reduction in shedding for all pre-challenged groups compared to controls and the outcome of the heterologous challenges varied according to hemagglutinin (HA) phylogenetic relatedness between the viruses used. There was a boost in the H3 antibody titer after re-infection with H4N5, which is consistent with original antigenic sin or antigenic seniority and suggest a putative strategy of virus evasion. These results imply competition between related subtypes that could regulate IAV subtype population dynamics in nature. Collectively, we provide new insights into within-host IAV complex interactions as drivers of IAV antigenic diversity that could allow the circulation of multiple subtypes in wild ducks.


Assuntos
Patos/imunologia , Patos/virologia , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Animais
13.
PLoS One ; 12(1): e0170335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107403

RESUMO

Mallards are widely recognized as reservoirs for Influenza A viruses (IAV); however, host factors that might prompt seasonality and trends in subtype diversity of IAV such as adaptive heterosubtypic immunity (HSI) are not well understood. To investigate this, we inoculated mallards with a prevailing H3N8 low pathogenic avian influenza virus (LPAIV) subtype in waterfowl to determine if prior infection with this virus would be protective against heterosubtypic infections with the H4N6, H10N7 and H14N5 LPAIV subtypes after one, two and three months, respectively. Also, we investigated the effect of cumulative immunity after sequential inoculation of mallards with these viruses in one-month intervals. Humoral immunity was assessed by microneutralization assays using a subset of representative LPAIV subtypes as antigens. Our results indicate that prior inoculation with the H3N8 virus confers partial protective immunity against subsequent heterosubtypic infections with the robustness of HSI related to the phylogenetic similarity of the HA protein of the strains used. Furthermore, induced HSI was boosted and followed by repeated exposure to more than one LPAIV subtype. Our findings provide further information on the contributions of HSI and its role in the dynamics of IAV subtype diversity in mallards.


Assuntos
Adaptação Fisiológica/imunologia , Patos/virologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Patos/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Eliminação de Partículas Virais
14.
Appl Environ Microbiol ; 82(4): 1147-1153, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655759

RESUMO

Wild waterfowl are important reservoir hosts for influenza A virus (IAV) and a potential source of spillover infections in other hosts, including poultry and swine. The emergence of highly pathogenic avian influenza (HPAI) viruses, such as H5N1 and H5N8, and subsequent spread along migratory flyways prompted the initiation of several programs in Europe, North America, and Africa to monitor circulation of HPAI and low-pathogenicity precursor viruses (low-pathogenicity avian influenza [LPAI] viruses). Given the costs of maintaining such programs, it is essential to establish best practice for field methodologies to provide robust data for epidemiological interpretation. Here, we use long-term surveillance data from a single site to evaluate the influence of a number of parameters on virus detection and isolation of LPAI viruses. A total of 26,586 samples (oropharyngeal, fecal, and cloacal) collected from wild mallards were screened by real-time PCR, and positive samples were subjected to isolation in embryonated chicken eggs. The LPAI virus detection rate was influenced by the sample type: cloacal/fecal samples showed a consistently higher detection rate and lower cycle threshold (Ct) value than oropharyngeal samples. Molecular detection was more sensitive than isolation, and virus isolation success was proportional to the number of RNA copies in the sample. Interestingly, for a given Ct value, the isolation success was lower in samples from adult birds than in those from juveniles. Comparing the results of specific real-time reverse transcriptase (RRT)-PCRs and of isolation, it was clear that coinfections were common in the investigated birds. The effects of sample type and detection methods warrant some caution in interpretation of the surveillance data.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Aviária/epidemiologia , Técnicas de Diagnóstico Molecular/métodos , Manejo de Espécimes/métodos , Cultura de Vírus/métodos , Animais , Cloaca/virologia , Patos , Fezes/virologia , Orofaringe/virologia , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Suécia
16.
PLoS One ; 10(8): e0134484, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241048

RESUMO

Influenza serology has traditionally relied on techniques such as hemagglutination inhibition, microneutralization, and ELISA. These assays are complex, challenging to implement in a format allowing detection of several types of antibody-analyte interactions at once (multiplex), and troublesome to implement in the field. As an alternative, we have developed a hemagglutinin microarray on the Arrayed Imaging Reflectometry (AIR) platform. AIR provides sensitive, rapid, and label-free multiplex detection of targets in complex analyte samples such as serum. In preliminary work, we demonstrated the application of this array to the testing of human samples from a vaccine trial. Here, we report the application of an expanded label-free hemagglutinin microarray to the analysis of avian serum samples. Samples from influenza virus challenge experiments in mallards yielded strong, selective detection of antibodies to the challenge antigen in most cases. Samples acquired in the field from mallards were also analyzed, and compared with viral hemagglutinin inhibition and microneutralization assays. We find that the AIR hemagglutinin microarray can provide a simple and robust alternative to standard methods, offering substantially greater information density from a simple workflow.


Assuntos
Patos/virologia , Monitoramento Epidemiológico/veterinária , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Aviária/epidemiologia , Animais , Anticorpos Antivirais/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática/métodos , Testes de Inibição da Hemaglutinação , Influenza Aviária/virologia
17.
J Gen Virol ; 96(8): 2050-2060, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25904147

RESUMO

Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. Frequent reassortment and co-circulating lineages were observed for all eight genomic RNA segments over time. There was no apparent species-specific effect on the diversity of the avian IAVs. There was a spatial and temporal relationship between the Eurasian sequences and significant viral migration of avian IAVs from West Eurasia towards Central Eurasia. The observed viral migration patterns differed between segments. Furthermore, we discuss the challenges faced when analysing these surveillance and sequence data, and the caveats to be borne in mind when drawing conclusions from the apparent results of such analyses.


Assuntos
Evolução Molecular , Genoma Viral , Vírus da Influenza A/genética , Influenza Aviária/virologia , Filogenia , Migração Animal , Animais , Animais Selvagens/virologia , Aves/fisiologia , Aves/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/fisiopatologia , Dados de Sequência Molecular , Filogeografia , RNA Viral/genética
18.
Appl Environ Microbiol ; 81(7): 2378-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616792

RESUMO

Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and emerging human IAVs often contain gene segments from avian viruses. The active drug metabolite of oseltamivir (oseltamivir carboxylate [OC]), stockpiled as Tamiflu for influenza pandemic preparedness, is not removed by conventional sewage treatment and has been detected in river water. There, it may exert evolutionary pressure on avian IAV in waterfowl, resulting in the development of resistant viral variants. A resistant avian IAV can circulate among wild birds only if resistance does not restrict viral fitness and if the resistant virus can persist without continuous drug pressure. In this in vivo mallard (Anas platyrhynchos) study, we tested whether an OC-resistant avian IAV (H1N1) strain with an H274Y mutation in the neuraminidase (NA-H274Y) could retain resistance while drug pressure was gradually removed. Successively infected mallards were exposed to decreasing levels of OC, and fecal samples were analyzed for the neuraminidase sequence and phenotypic resistance. No reversion to wild-type virus was observed during the experiment, which included 17 days of viral transmission among 10 ducks exposed to OC concentrations below resistance induction levels. We conclude that resistance in avian IAV that is induced by exposure of the natural host to OC can persist in the absence of the drug. Thus, there is a risk that human-pathogenic IAVs that evolve from IAVs circulating among wild birds may contain resistance mutations. An oseltamivir-resistant pandemic IAV would pose a substantial public health threat. Therefore, our observations underscore the need for prudent oseltamivir use, upgraded sewage treatment, and surveillance for resistant IAVs in wild birds.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Aviária/virologia , Mutação de Sentido Incorreto , Neuraminidase/isolamento & purificação , Oseltamivir/farmacologia , Proteínas Virais/isolamento & purificação , Substituição de Aminoácidos , Animais , Patos , Fezes/virologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Proteínas Mutantes/genética , Neuraminidase/genética , Seleção Genética , Proteínas Virais/genética
19.
PLoS One ; 9(3): e90826, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599502

RESUMO

Wild aquatic birds are recognized as the natural reservoir of avian influenza A viruses (AIV), but across high and low pathogenic AIV strains, scientists have yet to rigorously identify most competent hosts for the various subtypes. We examined 11,870 GenBank records to provide a baseline inventory and insight into patterns of global AIV subtype diversity and richness. Further, we conducted an extensive literature review and communicated directly with scientists to accumulate data from 50 non-overlapping studies and over 250,000 birds to assess the status of historic sampling effort. We then built virus subtype sample-based accumulation curves to better estimate sample size targets that capture a specific percentage of virus subtype richness at seven sampling locations. Our study identifies a sampling methodology that will detect an estimated 75% of circulating virus subtypes from a targeted bird population and outlines future surveillance and research priorities that are needed to explore the influence of host and virus biodiversity on emergence and transmission.


Assuntos
Animais Selvagens/virologia , Biodiversidade , Aves/virologia , Vírus da Influenza A/classificação , Influenza Aviária/virologia , Animais , Geografia , Interações Hospedeiro-Patógeno
20.
Proc Biol Sci ; 281(1781): 20140098, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24573857

RESUMO

Data on long-term circulation of pathogens in wildlife populations are seldom collected, and hence understanding of spatial-temporal variation in prevalence and genotypes is limited. Here, we analysed a long-term surveillance series on influenza A virus (IAV) in mallards collected at an important migratory stopover site from 2002 to 2010, and characterized seasonal dynamics in virus prevalence and subtype diversity. Prevalence dynamics were influenced by year, but retained a common pattern for all years whereby prevalence was low in spring and summer, but increased in early autumn with a first peak in August, and a second more pronounced peak during October-November. A total of 74 haemagglutinin (HA)/neuraminidase (NA) combinations were isolated, including all NA and most HA (H1-H12) subtypes. The most common subtype combinations were H4N6, H1N1, H2N3, H5N2, H6N2 and H11N9, and showed a clear linkage between specific HA and NA subtypes. Furthermore, there was a temporal structuring of subtypes within seasons based on HA phylogenetic relatedness. Dissimilar HA subtypes tended to have different temporal occurrence within seasons, where the subtypes that dominated in early autumn were rare in late autumn, and vice versa. This suggests that build-up of herd immunity affected IAV dynamics in this system.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Patos , Monitoramento Ambiental/estatística & dados numéricos , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Migração Animal/fisiologia , Animais , Europa (Continente)/epidemiologia , Variação Genética , Imunidade Coletiva/imunologia , Prevalência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...